
Package: sarsop (via r-universe)
September 12, 2024

Type Package

Title Approximate POMDP Planning Software

Version 0.6.15

Description A toolkit for Partially Observed Markov Decision Processes
(POMDP). Provides bindings to C++ libraries implementing the
algorithm SARSOP (Successive Approximations of the Reachable
Space under Optimal Policies) and described in Kurniawati et al
(2008), <doi:10.15607/RSS.2008.IV.009>. This package also
provides a high-level interface for generating, solving and
simulating POMDP problems and their solutions.

License GPL-2

URL https://github.com/boettiger-lab/sarsop

BugReports https://github.com/boettiger-lab/sarsop/issues

RoxygenNote 7.1.1

Imports xml2, parallel, processx, digest, Matrix

Suggests testthat, roxygen2, knitr, covr, spelling

LinkingTo BH

Encoding UTF-8

Language en-US

SystemRequirements mallinfo, hence Linux, MacOS or Windows

Repository https://boettiger-lab.r-universe.dev

RemoteUrl https://github.com/boettiger-lab/sarsop

RemoteRef HEAD

RemoteSha 65481c9942f95aed420000fbffbe65ddb3f9b95b

Contents
alphas_from_log . 2
assert_has_appl . 3

1

https://doi.org/10.15607/RSS.2008.IV.009
https://github.com/boettiger-lab/sarsop
https://github.com/boettiger-lab/sarsop/issues

2 alphas_from_log

compute_policy . 3
fisheries_matrices . 4
f_from_log . 5
hindcast_pomdp . 6
meta_from_log . 7
models_from_log . 8
pomdpsol . 9
read_policyx . 11
sarsop . 12
sim_pomdp . 13
write_pomdpx . 14

Index 16

alphas_from_log alphas_from_log

Description

Read alpha vectors from a log file.

Usage

alphas_from_log(meta, log_dir = ".")

Arguments

meta a data frame containing the log metadata for each set of alpha vectors desired,
see meta_from_log

log_dir path to log directory

Value

a list with a matrix of alpha vectors for each entry in the provided metadata (as returned by sarsop).

Examples

takes > 5s

source(system.file("examples/fisheries-ex.R", package = "sarsop"))
log = tempfile()
alpha <- sarsop(transition, observation, reward, discount, precision = 10,

log_dir = log)

assert_has_appl 3

assert_has_appl test the APPL binaries

Description

Asserts that the C++ binaries for appl have been compiled successfully

Usage

assert_has_appl()

Value

Will return TRUE if binaries are installed and can be located and executed, and FALSE otherwise.

Examples

assert_has_appl()

compute_policy compute_policy

Description

Derive the corresponding policy function from the alpha vectors

Usage

compute_policy(
alpha,
transition,
observation,
reward,
state_prior = rep(1, dim(observation)[[1]])/dim(observation)[[1]],
a_0 = 1

)

Arguments

alpha the matrix of alpha vectors returned by sarsop

transition Transition matrix, dimension n_s x n_s x n_a
observation Observation matrix, dimension n_s x n_z x n_a
reward reward matrix, dimension n_s x n_a
state_prior initial belief state, optional, defaults to uniform over states
a_0 previous action. Belief in state depends not only on observation, but on prior

belief of the state and subsequent action that had been taken.

4 fisheries_matrices

Value

a data frame providing the optimal policy (choice of action) and corresponding value of the action
for each possible belief state

Examples

m <- fisheries_matrices()
Takes > 5s

if(assert_has_appl()){
alpha <- sarsop(m$transition, m$observation, m$reward, 0.95, precision = 10)
compute_policy(alpha, m$transition, m$observation, m$reward)
}

fisheries_matrices fisheries_matrices

Description

Initialize the transition, observation, and reward matrices given a transition function, reward func-
tion, and state space

Usage

fisheries_matrices(
states = 0:20,
actions = states,
observed_states = states,
reward_fn = function(x, a) pmin(x, a),
f = ricker(1, 15),
sigma_g = 0.1,
sigma_m = 0.1,
noise = c("rescaled-lognormal", "lognormal", "uniform", "normal")

)

Arguments

states sequence of possible states
actions sequence of possible actions
observed_states

sequence of possible observations
reward_fn function of x and a that gives reward for tacking action a when state is x
f transition function of state x and action a.
sigma_g half-width of uniform shock or equivalent variance for log-normal
sigma_m half-width of uniform shock or equivalent variance for log-normal
noise distribution for noise, "lognormal" or "uniform"

f_from_log 5

Details

assumes log-normally distributed observation errors and process errors

Value

list of transition matrix, observation matrix, and reward matrix

Examples

m <- fisheries_matrices()

f_from_log f from log

Description

Read transition function from log

Usage

f_from_log(meta)

Arguments

meta a data frame containing the log metadata for each set of alpha vectors desired,
see meta_from_log

Details

note this function is unique to the fisheries example problem and assumes that sarsop call is run
with logging specifying a column "model" that contains either the string "ricker" (corresponding to
a Ricker-type growth function) or "allen" (corresponding to an Allen-type.)

Value

the growth function associated with the model indicated.

Examples

takes > 5s

source(system.file("examples/fisheries-ex.R", package = "sarsop"))
log = tempfile()
alpha <- sarsop(transition, observation, reward, discount, precision = 10,

log_dir = log)

6 hindcast_pomdp

hindcast_pomdp hindcast_pomdp

Description

Compare historical actions to what pomdp recommendation would have been.

Usage

hindcast_pomdp(
transition,
observation,
reward,
discount,
obs,
action,
state_prior = rep(1, dim(observation)[[1]])/dim(observation)[[1]],
alpha = NULL,
...

)

Arguments

transition Transition matrix, dimension n_s x n_s x n_a

observation Observation matrix, dimension n_s x n_z x n_a

reward reward matrix, dimension n_s x n_a

discount the discount factor

obs a given sequence of observations

action the corresponding sequence of actions

state_prior initial belief state, optional, defaults to uniform over states

alpha the matrix of alpha vectors returned by sarsop

... additional arguments to appl.

Value

a list, containing: a data frame with columns for time, obs, action, and optimal action, and an array
containing the posterior belief distribution at each time t

Examples

m <- fisheries_matrices()
Takes > 5s

if(assert_has_appl()){
alpha <- sarsop(m$transition, m$observation, m$reward, 0.95, precision = 10)
sim <- hindcast_pomdp(m$transition, m$observation, m$reward, 0.95,

meta_from_log 7

obs = rnorm(21, 15, .1), action = rep(1, 21),
alpha = alpha)

}

meta_from_log meta from log

Description

load metadata from a log file

Usage

meta_from_log(
parameters,
log_dir = ".",
metafile = paste0(log_dir, "/meta.csv")

)

Arguments

parameters a data.frame with the desired parameter values as given in metafile

log_dir path to log directory

metafile path to metafile index, assumed to be meta.csv in log_dir

Value

a data.frame with the rows of the matching metadata.

Examples

takes > 5s

source(system.file("examples/fisheries-ex.R", package = "sarsop"))
log = tempfile()
alpha <- sarsop(transition, observation, reward, discount, precision = 10,

log_dir = log)

8 models_from_log

models_from_log model from log

Description

Read model details from log file

Usage

models_from_log(meta, reward_fn = function(x, h) pmin(x, h))

Arguments

meta a data frame containing the log metadata for each set of alpha vectors desired,
see meta_from_log

reward_fn a function f(x,a) giving the reward for taking action a given a system in state x.

Details

assumes transition can be determined by the f_from_log function, which is specific to the fisheries
example

Value

a list with an element for each row in the requested meta data frame, which itself is a list of the
three matrices: transition, observation, and reward, defining the pomdp problem.

Examples

takes > 5s

source(system.file("examples/fisheries-ex.R", package = "sarsop"))
log = tempfile()
alpha <- sarsop(transition, observation, reward, discount, precision = 10,

log_dir = log)

pomdpsol 9

pomdpsol APPL wrappers

Description

Wrappers for the APPL executables. The pomdpsol function solves a model file and returns the
path to the output policy file.

Usage

pomdpsol(
model,
output = tempfile(),
precision = 0.001,
timeout = NULL,
fast = FALSE,
randomization = FALSE,
memory = NULL,
improvementConstant = NULL,
timeInterval = NULL,
stdout = tempfile(),
stderr = tempfile(),
spinner = TRUE

)

polgraph(
model,
policy,
output = tempfile(),
max_depth = 3,
max_branches = 10,
min_prob = 0.001,
stdout = "",
spinner = TRUE

)

pomdpsim(
model,
policy,
output = tempfile(),
steps = 100,
simulations = 3,
stdout = "",
spinner = TRUE

)

pomdpeval(

10 pomdpsol

model,
policy,
output = tempfile(),
steps = 100,
simulations = 3,
stdout = "",
spinner = TRUE

)

pomdpconvert(model, stdout = "", spinner = TRUE)

Arguments

model file/path to the pomdp model file

output file/path of the output policy file. This is also returned by the function.

precision targetPrecision. Set targetPrecision as the target precision in solution quality;
run ends when target precision is reached. The target precision is 1e-3 by default.

timeout Use timeLimit as the timeout in seconds. If running time exceeds the specified
value, pomdpsol writes out a policy and terminates. There is no time limit by
default.

fast logical, default FALSE. use fast (but very picky) alternate parser for .pomdp
files.

randomization logical, default FALSE. Turn on randomization for the sampling algorithm.

memory Use memoryLimit as the memory limit in MB. No memory limit by default. If
memory usage exceeds the specified value, pomdpsol writes out a policy and
terminates. Set the value to be less than physical memory to avoid swapping.

improvementConstant

Use improvementConstant as the trial improvement factor in the sampling algo-
rithm. At the default of 0.5, a trial terminates at a belief when the gap between
its upper and lower bound is 0.5 of the current precision at the initial belief.

timeInterval Use timeInterval as the time interval between two consecutive write-out of pol-
icy files. If this is not specified, pomdpsol only writes out a policy file upon
termination.

stdout a filename where pomdp run statistics will be stored

stderr currently ignored.

spinner should we show a spinner while sarsop is running?

policy file/path to the policy file

max_depth the maximum horizon of the generated policy graph

max_branches maximum number of branches to show in the policy graph

min_prob the minimum probability threshold for a branch to be shown in the policy graph

steps number of steps for each simulation run

simulations as the number of simulation runs

read_policyx 11

Examples

if(assert_has_appl()){
model <- system.file("models", "example.pomdp", package = "sarsop")
policy <- tempfile(fileext = ".policyx")
pomdpsol(model, output = policy, timeout = 1)

Other tools
evaluation <- pomdpeval(model, policy, stdout = FALSE)
graph <- polgraph(model, policy, stdout = FALSE)
simulations <- pomdpsim(model, policy, stdout = FALSE)

}

read_policyx read_policyx

Description

read a .policyx file created by SARSOP and return alpha vectors and associated actions.

Usage

read_policyx(file = "output.policyx")

Arguments

file name of the policyx file to be read.

Value

a list, first element "vectors" is an n_states x n_vectors array of alpha vectors, second element is a
numeric vector "action" of length n_vectors whose i’th element indicates the action corresponding
to the i’th alpha vector (column) in the vectors array.

Examples

f <- system.file("extdata", "out.policy", package="sarsop", mustWork = TRUE)
policy <- read_policyx(f)

12 sarsop

sarsop sarsop

Description

sarsop wraps the tasks of writing the pomdpx file defining the problem, running the pomdsol (SAR-
SOP) algorithm in C++, and then reading the resulting policy file back into R. The returned alpha
vectors and alpha_action information is then transformed into a more generic, user-friendly repre-
sentation as a matrix whose columns correspond to actions and rows to states. This function can
thus be used at the heart of most pomdp applications.

Usage

sarsop(
transition,
observation,
reward,
discount,
state_prior = rep(1, dim(observation)[[1]])/dim(observation)[[1]],
verbose = TRUE,
log_dir = tempdir(),
log_data = NULL,
cache = TRUE,
...

)

Arguments

transition Transition matrix, dimension n_s x n_s x n_a

observation Observation matrix, dimension n_s x n_z x n_a

reward reward matrix, dimension n_s x n_a

discount the discount factor

state_prior initial belief state, optional, defaults to uniform over states

verbose logical, should the function include a message with pomdp diagnostics (timings,
final precision, end condition)

log_dir pomdpx and policyx files will be saved here, along with a metadata file

log_data a data.frame of additional columns to include in the log, such as model param-
eters. A unique id value for each run can be provided as one of the columns,
otherwise, a globally unique id will be generated.

cache should results from the log directory be cached? Default TRUE. Identical func-
tional calls will quickly return previously cached alpha vectors from file rather
than re-running.

... additional arguments to appl.

sim_pomdp 13

Value

a matrix of alpha vectors. Column index indicates action associated with the alpha vector, (1:n_actions),
rows indicate system state, x. Actions for which no alpha vector was found are included as all -Inf,
since such actions are not optimal regardless of belief, and thus have no corresponding alpha vectors
in alpha_action list.

Examples

Takes > 5s
Use example code to generate matrices for pomdp problem:
source(system.file("examples/fisheries-ex.R", package = "sarsop"))
alpha <- sarsop(transition, observation, reward, discount, precision = 10)
compute_policy(alpha, transition, observation, reward)

sim_pomdp simulate a POMDP

Description

Simulate a POMDP given the appropriate matrices.

Usage

sim_pomdp(
transition,
observation,
reward,
discount,
state_prior = rep(1, dim(observation)[[1]])/dim(observation)[[1]],
x0,
a0 = 1,
Tmax = 20,
policy = NULL,
alpha = NULL,
reps = 1,
...

)

Arguments

transition Transition matrix, dimension n_s x n_s x n_a

observation Observation matrix, dimension n_s x n_z x n_a

reward reward matrix, dimension n_s x n_a

discount the discount factor

14 write_pomdpx

state_prior initial belief state, optional, defaults to uniform over states

x0 initial state

a0 initial action (default is action 1, e.g. can be arbitrary if the observation process
is independent of the action taken)

Tmax duration of simulation

policy Simulate using a pre-computed policy (e.g. MDP policy) instead of POMDP

alpha the matrix of alpha vectors returned by sarsop

reps number of replicate simulations to compute

... additional arguments to mclapply

Details

simulation assumes the following order of updating: For system in state[t] at time t, an observation
of the system obs[t] is made, and then action[t] is based on that observation and the given policy,
returning (discounted) reward[t].

Value

a data frame with columns for time, state, obs, action, and (discounted) value.

Examples

m <- fisheries_matrices()
discount <- 0.95
Takes > 5s

if(assert_has_appl()){
alpha <- sarsop(m$transition, m$observation, m$reward, discount, precision = 10)
sim <- sim_pomdp(m$transition, m$observation, m$reward, discount,

x0 = 5, Tmax = 20, alpha = alpha)

}

write_pomdpx write pomdpx files

Description

A POMDPX file specifies a POMDP problem in terms of the transition, observation, and reward
matrices, the discount factor, and the initial belief.

write_pomdpx 15

Usage

write_pomdpx(
P,
O,
R,
gamma,
b = rep(1/dim(O)[1], dim(O)[1]),
file = "input.pomdpx",
digits = 12,
digits2 = 12,
format = "f"

)

Arguments

P transition matrix

O observation matrix

R reward

gamma discount factor

b initial belief

file pomdpx file to create

digits precision to round to before normalizing. Leave at 4 since sarsop seems unable
to do more?

digits2 precision to write solution to. Leave at 10, since normalizing requires additional
precision

format floating point format, because sarsop parser doesn’t seem to know scientific
notation

Examples

m <- fisheries_matrices()
f <- tempfile()
write_pomdpx(m$transition, m$observation, m$reward, 0.95,

file = f)

Index

alphas_from_log, 2
appl, 6, 12
appl (pomdpsol), 9
assert_has_appl, 3

compare_pomdp (hindcast_pomdp), 6
compute_policy, 3

f_from_log, 5
fisheries_matrices, 4

hindcast_pomdp, 6

meta_from_log, 2, 5, 7, 8
models_from_log, 8

polgraph (pomdpsol), 9
pomdpconvert (pomdpsol), 9
pomdpeval (pomdpsol), 9
pomdpsim (pomdpsol), 9
pomdpsol, 9

read_policyx, 11

SARSOP (pomdpsol), 9
sarsop, 2, 3, 6, 12, 14
sim_pomdp, 13

write_pomdpx, 14

16

	alphas_from_log
	assert_has_appl
	compute_policy
	fisheries_matrices
	f_from_log
	hindcast_pomdp
	meta_from_log
	models_from_log
	pomdpsol
	read_policyx
	sarsop
	sim_pomdp
	write_pomdpx
	Index

